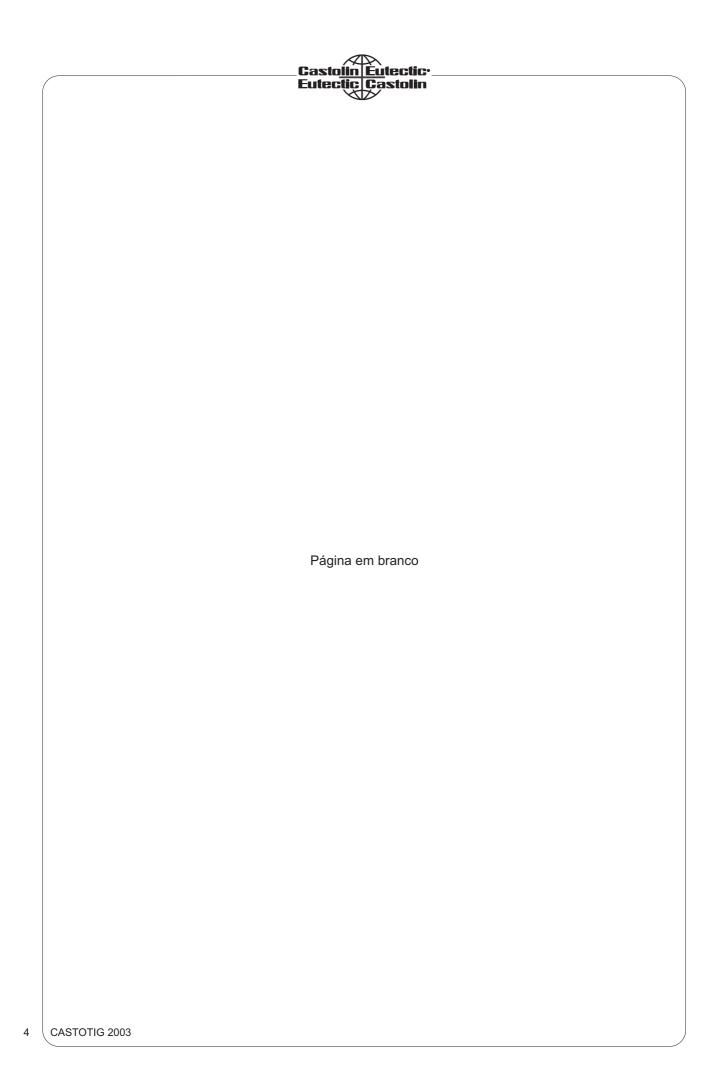


CastoTIG 2003 AC/DC

Manual , TECNICO


CASTOTIG 2003 AC/DC

Fonte de energia para solda TIG e com eletrodos revestidos

MANUAL DO USUÁRIO / LISTA DE PARTES E PEÇAS

Índice

01) Introdução	5
02) Fator de trabalho	5
03) Medidas de segurança	5
04) Características técnicas	6
05) Instalação	7
06) Operação	8
07) Manutenção	16
08) Esquema elétrico	18
09) Pecas de reposição	20

ANTES DE INSTALAR A SUA FONTE PARA O PROCESSO TIG CASTOTIG 2003, LEIA COM ATENÇÃO AS INFORMAÇÕES AQUI CONTIDAS.

1) INTRODUÇÃO

O CASTOTIG 2003 é uma fonte de energia, projetada com tecnologia de inversor, que fornece corrente alternada e corrente contínua para a soldagem TIG, particularmente para a soldagem de chapas finas e que exigem ótimo acabamento, e para soldagem com eletrodos revestidos de aço carbono, inoxidáveis e ferro fundido.

A abertura do arco no processo TIG é feita por meio de uma centelha; neste processo aproxima-se o eletrodo da peça a ser soldada, sem encostar este na peça, pressiona-se o gatilho da tocha, a centelha salta do eletrodo de tungstênio para a peça a ser soldada abrindo assim o arco elétrico ou LiftArc neste processo para iniciar a soldagem, encosta-se o eletrodo de tungstênio na peça a ser soldada, pressiona-se o gatilho da tocha e afasta-se o eletrodo, abrindo assim o arco elétrico. Estes possuem ainda a função 2 toques/4toques, pósfluxo de gás ajustável e ajuste do tempo de rampa no término da soldagem.

Possui sistema de proteção contra sobreaquecimento que garante a operação segura dos componentes internos.

2) FATOR DE TRABALHO

Chama-se Fator de trabalho a razão entre o tempo durante o qual uma máquina de soldar pode fornecer uma determinada corrente máxima de soldagem (tempo de carga) e um tempo de referência; conforme normas internacionais, o tempo de referência é igual a 10 minutos.

Por exemplo, o Fator de Trabalho nominal de 60% significa que a máquina pode fornecer a sua corrente de soldagem máxima durante períodos de 6 min. (carga), cada período devendo ser seguido de um período de descanso, a máquina não fornece corrente de soldagem de 4 min. (6+4 = 10 min), repetidamente e sem que a temperatura dos seus componentes internos ultrapasse os limites.

O Fator de Trabalho de 100% significa que a unidade pode fornecer a corrente de soldagem especificada (ver Tabela 3.1) ininterruptamente, isto é, sem qualquer necessidade de descanso.

Numa máquina de solda, o Fator de Trabalho

permitido aumenta até 100% a medida que a corrente de soldagem utilizada diminui; inversamente. O Fator de Trabalho permitido diminui a medida que a corrente de soldagem aumenta até o máximo da faixa.

3) MEDIDAS DE SEGURANÇA

Nunca inicie uma soldagem sem obedecer aos seguintes procedimentos :

3.1) Proteção dos olhos

Use sempre um capacete de solda com lentes apropriadas para proteger os olhos e o rosto (Tabela 1).

Corrente de solda (A)	Lente N°
30 a 75	8
75 a 200	10
200 a 400	12
acima de 400	14

TABELA 1 - Proteção adequada dos olhos em função da corrente

3.2) Proteção do corpo

Durante a soldagem use sempre luvas de couro. Em trabalhos complexos, que requeiram muita mobilidade e posicionamento preciso da tocha, utilize luvas de couro fino. Soldagens delicadas, com baixas intensidades de corrente, permitem a utilização de luvas de tecido. Todo o corpo deve ser protegido contra a radiação ultravioleta do arco elétrico.

3.3) Ventilação

A soldagem nunca deve ser feita em ambientes completamente fechados e sem meios para exaurir gases e fumaças. Entretanto, a soldagem não pode ser efetuada em locais com correnteza de ar sobre a tocha que afete a sua cortina de gás de proteção.

3.4) Precauções elétricas

Ao manipular qualquer equipamento elétrico devese tomar um cuidado especial para não tocar em partes "vivas", isto é, que estão sob tensão, sem a devida proteção.

Calce sapatos de sola de borracha e, mesmo assim, nunca pise em chão molhado quando estiver soldando.

Verifique o estado da tocha e se os cabos estão em perfeitas condições, sem partes gastas, queimadas ou desfiadas.

Nunca abra o gabinete sem antes desligar completamente a unidade da rede de alimentação elétrica. Para proteção do soldador, a máquina deve ser sempre "aterrada".

3.5) Precauções contra fogo

Papéis, palha, madeira, tecidos, estopa e qualquer outro material combustível devem ser removidos da área de solda. Ao soldar tanques, recipientes ou tubos para líquidos inflamáveis, certifique-se de que tenham sido completamente enxaguados com água ou outro solvente não inflamável e que estejam totalmente secos e livres de vapores residuais.

Solventes clorados como o tetracloreto de carbono e o tricloroetileno, embora não inflamáveis, devem ser totalmente secos antes de proceder a soldagem, caso contrário, geram gases altamente tóxicos quando submetidos ao arco elétrico. Em caso de fogo ou curto-circuito, nunca jogue água sobre qualquer equipamento elétrico. Desligue a fonte de energia e use um extintor de gás carbônico ou pó químico para apagar as chamas.

4) CARACTERÍSTICAS TÉCNICAS

CARACTERÍSTICAS CASTOTIG 2003						
Tensão em vazio (V)		70				
Faixa de corrente (A)	-	TIG 3 a 220 ELETRODO 4 a 16			a 160	
Cargas autorizadas		TIG		E	LETROD)
- Fator de trabalho (%)	100	60	20	100	60	30
- Corrente de soldagem (A)	140	150	220	110	120	160
- Tensão em carga convencional (V)	15,6	16	18,8	24,4	24,8	26,4
Alimentação elétrica (V - Hz)		220 - 50/60				
Potência aparente nominal (KVA		6				
Classe térmica		H (180° C)				
Dimensões (I x c x a - mm)		188 X 418 X 345				
Peso (kg)		15				
Classe de proteção		IP 23				

Tabela 1 - Dados técnicos do CASTOTIG 2003

4) CONTROLES E CONEXÕES

4.1) Frontal e traseira

1 – Conector para controle remoto

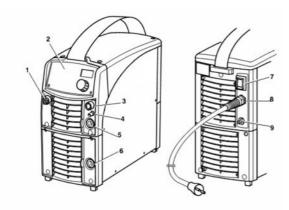
6 – Conector do cabo obra

2 – Painel de controle.

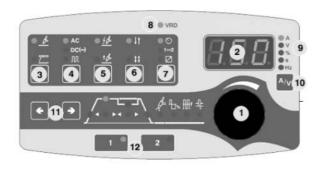
7 – Chave liga/desliga

3 - Conector para tocha TIG

8 - Cabo de alimentação da rede


4 – Conector de saída de gás para tocha TIG

9 – Conexão de entrada do gás de proteção


5 – Conector para porta eletrodo

CASTOTIG 2003

4.2) Painel de controle

- 1 Botão de regulagem de parâmetros (corrente, tensão, percentagem, segundos ou frequência)
- 2-Visor
- 3 –Seleção do modo de soldagem TIG ou Eletrodo (MMA).
- 4- Seleção de soldagem TIG com corrente alternada (AC), Soldagem TIG/Eletrodo com corrente contídua (DC-) ou soldagem TIG com corrente pulsada.
- 5 Seleção de partida com Alta frequencia (HF) ou LiftArc.
- 6 Seleção do modo do gatilho da tocha TIG em 2 tempos ou 4 tempos.
- 7 —Definição dos parâmetros feitas no painel, alteração do programa pelo gatilho da tocha ou com a unidade de controle remoto.
- 8 Indicador se a função VRD (tensão de circuito aberto reduzida) está ativa ou inativa. Somente para soldagem com eletrodo revestidos (MMA).
- 9 Indicador de qual parâmetro é mostrado no visor (Corrente, tensão, percentagem, segundos ou frequência).

- 10 Seletor de indicação de corrente (A) ou indicação de tensão (V) que durante a soldagem será mostrada no visor.
- 11 Indicação de qual parâmetro está selecionado, ver operação. O botão do lado direito também é utilizado para funções ocultas.
- 12 Botões para a memória de definição dos dados de soldagem, ver operação.

5) INSTALAÇÃO

5.1) Recebimento

Ao receber uma Fonte de energia CASTOTIG 2003, remover todo o material de embalagem em volta da unidade e verificar a existência de eventuais danos que possam ter ocorrido durante o transporte. Quaisquer reclamações relativas a danificação em trânsito devem ser dirigidas à empresa Transportadora.

Remover cuidadosamente todo e qualquer material que possa obstruir a passagem do ar de ventilação, o que diminuiria a eficiência da refrigeração.

5.2) Local de trabalho

Vários fatores devem ser considerados ao se determinar o local de trabalho de uma máquina de soldar, de maneira a proporcionar uma operação segura e eficiente. Uma ventilação adequada é necessária para a refrigeração do equipamento e a segurança do operador. É da maior importância que a área de trabalho seja sempre mantida limpa.

É necessário deixar um corredor de circulação com pelo menos 500 mm de largura em torno da máquina para a sua ventilação.

A instalação de qualquer dispositivo de filtragem do ar ambiente restringe o volume de ar disponível para a refrigeração da máquina e leva a um sobreaquecimento dos seus componentes internos. A instalação de qualquer dispositivo de filtragem não autorizado pelo Fabricante anula a garantia dada ao equipamento.

5.3) Alimentação elétrica

O CASTOTIG 2003 é alimentado com 220 V, 50 ou 60 Hz. Ele deve ser alimentado a partir de uma linha elétrica independente e de capacidade adequada de maneira a se garantir o seu melhor desempenho e a se reduzir as falhas de soldagem ou eventuais danos causados por outros equipamentos tais como

máquinas de soldar por resistência, prensas de impacto, motores elétricos, etc. Pode eventualmente causar rádio-interferência, sendo responsabilidade do proprietário providenciar as condições para eliminação desta interferência.

A alimentação elétrica deve sempre ser feita através de uma chave de parede exclusiva com fusíveis ou disjuntores de proteção adequadamente dimensionados.

IMPORTANTE!

O terminal de aterramento está ligado ao chassi da unidade. Ele deve estar conectado a um ponto eficiente de aterramento da instalação elétrica geral.

Todas as conexões elétricas devem ser firmemente apertadas de forma a não haver risco de faiscamento, sobreaquecimento ou queda de tensão nos circuitos.

Fusíveis retardados ou Disjuntor Recomendável : 20 A.

N.B.: NÃO USAR O NEUTRO DA REDE PARA O ATERRAMENTO.

6) Operação

Soldagem TIG

6.1) Definições

TIG sem CA/CC pulsada e TIG com CC pulsada

Função	Intervalo entre os valores	Em intervalos de	Valor por
HF / LittArc t 2)	HF ou LiftArc-	-	Lift Arct
2/4 tempos ²⁾	2 tempos ou 4 tempos	-	2 tempos
Tempo de pré-fluxo de gás 1)	0 - 5 s	0.1 s	0,5 s
Tempo de subida	0 - 10 s	0,1 s	0,0 s
Tempo de descida	0 - 10 s	0,1 s	1,0 s
Tempo de pós fluxo do gás	0 - 25 s	0,1 s	5,0 s
Corrente	4 - 220 A	1 A	60 A
Painel ativo	OFF ou ON	-	ON
Alterar dados de disparo	OFF ou ON	-	OFF
Corrente min	0 - 99%	-	30%F

TIG com CA

Função	Intervalo entre os valores	Em intervalos de	Valor por definição
Definição de equílbrio	50 - 98 %"	1 %	50%
Definição de freqüência	10 - 152 Hz	Hz com passo de 0,2 ms	65 Hz
Pré-aquecimento do eletrodo	0 - 100	1	-

TIG com CC pulsada

Função	Intervalo entre os valores	Em intervalos de	Valor por definição
Corrente pulsada	4 -220 A	1 A	60A
Tempo dos impulsos	0,01 -2,5 s	0.01 s	1,0 s
Micro impulso 1)	0,001 -0,250 s	0,001 s	
Corrente base	4 -220 A	1 A	20 A
Tempo base	0,01 -2.5 s	0,01 s	1,0 s
Micro impulso 1)	0.001 -0.250 s	0.001 s	

- 1) Estas funções são funções TIG ocultas, ver descrição no ponto 6.3
- 2) Estas funções não podem ser alteradas enquanto a soldagem está em curso

6.2) Explicações dos símbolos e das funções

Soldagem TIG

A soldagem TIG funde o metal da peça de trabalho, utilizando um arco formado por um eletrodo de tungstênio, que não se funde. A poça de fusão e o eletrodo estão protegidos por um gás de proteção.

AC

Corrente alternada

As vantagens da corrente alternada são o risco reduzido de explosão do arco magnético e uma boa capacidade de decomposição do óxido na soldagem de alumínio.

DC(-)

Corrente contínua

Uma corrente mais elevada produz uma poça de fusão maior, com uma melhor penetração na peça de trabalho.

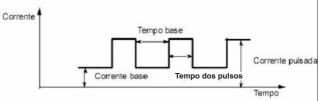
$\overline{\Pi}$

Corrente pulsada (apenas CC)

Os pulsos são utilizados para melhorar o controle da poça de fusão e do processo de solidificação. A freqüência dos pulsos é definida para ser de tal maneira lenta que a poça de fusão tem tempo para solidificar, pelo menos parcialmente, entre cada pulso. De modo a definir os pulsos, são necessários quatro parâmetros: corrente pulsada, tempo dos pulsos, corrente base e tempo base.

Definições de parâmetros

- 1. Subida
- 2. Corrente de soldagem
- 3. Tempo dos pulsos
- 4. Corrente base
- 5. Tempo base
- 6. Descida
- 7. Tempo de pós fluxo do gás
- 8. Equilíbrio
- 9. Freqüência
- 10. Pré-aquecimento do eletrodo



Subida

A função de subida significa que, quando o arco TIG se forma, a corrente sobe lentamente para o valor definido. Tal proporciona um aquecimento "mais suave" do eletrodo e dá ao soldador a oportunidade de posicionar correctamente o eletrodo, antes de se atingir o valor da corrente de soldagem definido.

Corrente pulsada

O mais elevado dos dois valores da corrente no caso de corrente pulsada.

Soldagem TIG com pulsos

Tempo dos pulsos

Período de tempo durante o qual a corrente pulsada está ligada durante um período de pulsos.

Corrente base

O mais baixo dos dois valores da corrente no caso de corrente pulsada.

Tempo base

Período de tempo para a corrente de base que, juntamente com o período de tempo da corrente pulsada, define o período de pulsos.

Descida

A soldagem TIG utiliza a descida, na qual a corrente desce "lentamente" durante um período de tempo controlado, de forma a evitar crateras e/ou trincas quando se termina uma soldagem

Pós-fluxo do gás

O Pós-fluxo do gás controla o tempo durante o qual o gás de proteção flui depois do arco ser extinto.

Equilíbrio

Definir o equilíbrio entre meio período do eletrodo positivo (+) e negativo (-) durante soldagem com corrente alternada (AC).

Um valor de equilíbrio mais baixo produz mais calor sobre o eletrodo e melhor decomposição do óxido na peça a trabalhar.

Um valor de equilíbrio mais elevado produz mais calor sobre a peça a trabalhar e melhor penetração.

Freqüência

Freqüência mais baixa (corrente alternada) transfere mais calor para a peça a trabalhar e produz uma poça de fusão mais larga.

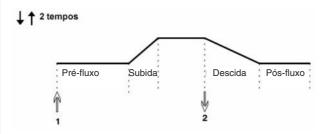
Freqüência mais elevada produz um arco mais estreito com força de arco mais elevada (poça de fusão mais estreita).

	Eletrodo de Tungstênio		Variação da	as definições	
	Liettodo de l'uligatemo		Gás de	proteção	
Ø	Cor	Tipo		Argônio	Arg.+30%He
1,6	Verde	WP	V	-	-
1,6	Verde	WP	C	30	35
1.6	Preto	WL10	V	20	20
1.6	Preto	WL10	U	30	35
2.4	Verde	WP	V	45	-
2.4	Verde	WP	U	55	60
2.4	Preto	WL10	V	40	40
2.4	Preto	WL10	U	45	50
3.2	Verde	WP	V	55	-
3.2	Verde	WP	U	65	65
3.2	Preto	WL10	V	60	60
3.2	Preto	WL10	U	70	70
4,0	Verde	WP	V	70	75
4.0	Verde	WP	U	80	85
4.0	Preto	WL10	V	65	65
4.0	Preto	WL10	U	70	75

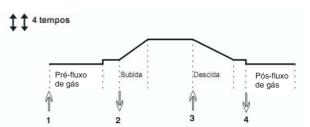
WP = Eletrodo de Tungstênio puro

WL10 = Eletrodo de Tungstênio com liga de lantânio

A função HF forma o arco por meio de uma faísca que parte do eletrodo para a peça de trabalho à medida que o eletrodo se aproxima da peça de trabalho.



A função LiftArc- forma o arco quando o eletrodo entra em contato com a peça de trabalho e em seguida é levantado, afastando-se.



Formar o arco com a função LiftArct. Passo 1: o eletrodo entra em contato com a peça de trabalho. Passo 2: o gatilho da tocha é pressionado e começa a passar uma corrente baixa. Passo 3: o soldador levanta o eletrodo da peça de trabalho: o arco formase, e a corrente sobe automaticamente para o valor definido.

Funções quando é utilizado o controle de 2 tempos da tocha de soldagem

No modo de controle a 2 tempos, pressionando o gatilho da tocha TIG (1) inicia-se o pré fluxo de gás (se for utilizado) e forma o arco. A corrente sobe para o valor definido (controlado pela função de subida, se estiver em funcionamento). Quando se solta o gatilho (2), diminui-se a corrente (ou a descida é iniciada se estiver em funcionamento) e extingue-se o arco. Segue-se o pós fluxo se estiver em funcionamento.

No modo de controle a 4 tempos, quando se pressiona o gatilho (1) inicia-se o pré-fluxo de gás (se for utilizado). No final do tempo do pré-fluxo de gás, a corrente sobe até à corrente piloto (alguns amperes) e o arco é formado. Quando se solta o gatilho (2), a corrente sobe para o valor definido (com a subida, se estiver sendo utilizada). Quando se pressiona o gatilho (3) a corrente regressa à corrente piloto definida (com "descida" se estiver sendo utilizada). Quando o gatilho é novamente solto (4) o arco é extinto e ocorre o fluxo posterior de gás.

Painel ativo

As definições são feitas a partir do painel de controle.

1#2

Alterar dados de disparo

Esta função permite alternar entre memórias de dados de soldagem diferentes pressionando duas vezes no gatilho da tocha de soldar.

Obs: esta função é exclusiva para soldagem TIG.

Unidade de comando à distância

As definições são feitas a partir da unidade de comando á distância.

A unidade de comando à distância deve ser ligada ao terminal da unidade de comando à distância na máquina antes da máquina ser ligada. Quando a unidade de comando à distância é ativada o painel fica inativo.

6.3) Funções TIG ocultas

Existem funções ocultas no painel de controle.

Para acessar a estas funções, pressione durante 5 segundos. O visor exibe uma letra e um valor. Selecione a função pressionando a seta para a direita. O botão é utilizado para alterar o valor da função seleccionada.

Definições	Valor por definição
0-5 s	0,5 s 0
0 = OFF; 1 = ON	
	0-5 s

Para sair das funções ocultas, pressione Durante 5 segundos.

Pré-fluxo de gás

Controla o tempo durante o qual o gás de proteção

SOLDAGEM MMA

6.4) Definições

Função	Intervalo entre os valores	Em intervalos de:	Valor por definição
Corrente	16-160 A	1 A	100A
Hotstart 1)	0-99	1	0
Força do arco ¹⁾	0-99	1	5
Soldagem gota a gota 1)	0=OFF ou 1=ON	-	OFF
Regulador de soldagem ArcPlus± 1)	1=OFFou 0 =ON	-	ON
Painel ativo	OFF ou ON	-	ON
Unidade de comando à distância	OFF ou ON	-	OFF

¹⁾Estas funções são funções ocultas , ver descrição no tópico 6.6.

6.5) Explicações dos símbolos e das funções

VRD (Voltage Reduction Device) (dispositivo de redução de tensão) A função VRD garante que a tensão de circuito aberto não ultrapassa os 35 V quando não se está soldando. Isto é indicado pelo LED VRD. A função VRD é desativada quando o sistema deteta que se iniciou a soldagem.

Se a função VRD estiver ativada e a tensão de circuito aberto ultrapassar o limite de 35 V, isso é indicado por uma mensagem de erro (16) que aparece no visor e não é possível iniciar a soldagem enquanto a mensagem de erro estiver indicada.

Nota! VRD ativa - aplica-se apenas a soldagem com

flui antes de formar o arco.

Micro pulso

Para poder selecionar micro pulsos, a máquina tem que estar na função de corrente pulsada . O valor para o tempo dos pulsos e corrente base é, normalmente, 0,01 - 2,50 segundos. Utilizando micro pulsos, o tempo pode descer para 0,001 segundos. Quando a função de micro impulso está ativa, tempos inferiores a 0,25 segundos são apresentados sem vírgulas decimais.

Corrente mín.

Utilizado para definir a corrente mínima para o comando à distância T1 Foot CAN.

Se a corrente máx. for 100 A e a corrente mín. vai ser 50 A, defina a corrente mínima de função oculta para 50%.

Se a corrente máx. for 100 A e a corrente mín. vai ser 90 A, defina a corrente mínima para 90%.

eletrodos MMA.

A função VRD não está ativa (LED apagado)na entrega. Contate um técnico de assistência autorizada para ativar esta função.

À soldagem MMA também se pode chamar soldagem com eletrodos revestidos. A formação do arco derrete o eletrodo, formando o seu revestimento uma escória de proteção.

Durante a soldagem MMA, é possível soldar com polaridade invertida.

Selecione soldagem MMA _____e depois pressione

Painel ativo

As definições são feitas a partir do painel de controle.

Unidade de comando a distância

As definições são feitas a partir da unidade de comando à distância.

A unidade de comando à distância deve ser ligada ao terminal da unidade de comando à distância na máquina antes da ativação. Quando a unidade de comando à distância é ativada o painel está inativo.

6.6) Funções MMA ocultas

Existem funções ocultas no painel de controlo.

Para acessar a estas funções, pressione durante 5 segundos. O visor exibe uma letra e um valor. Selecione a função pressionando a seta para a direita. O botão é utilizado para alterar o valor da função selecionada.

Função	Definições	Valor por definição
C = Arcforce	0 -99	5
d = soldagem gota a gota	0= OFF; 1 = ON	0
F = regulador tipo ArcPlus±	1 = OFF;0 = ON	0
H = Hotstart	0 -9 9	0

Para sair das funções ocultas, pressione durante 5 segundos

Arcforce (Força do Arco)

A força do arco é importante para determinar como a corrente se altera em resposta a uma alteração no comprimento do arco. Um valor mais baixo produz um arco mais suave com menos respingos.

Soldagem gota a gota

A soldagem gota a gota pode ser utilizada quando se solda com eletrodos de aço inoxidável. A função envolve formar e apagar o arco, alternadamente, de modo a conseguir um melhor controle da fonte de calor. O eletrodo só precisa ser ligeiramente levantado para extinguir o arco.

Regulador de soldagem ArcPlust±

O regulador de soldagem ArcPlust é um novo tipo de controle que produz um arco mais intenso, mais concentrado e mais suave. Recupera mais rapidamente após um curto-circuito no local, o que reduz o risco do eletrodo ficar encravado. A maior parte das aplicações de soldagem obtém os melhores resultados com ArcPlus± ON (0).

Hot start

O Hotstart aumenta a corrente de soldagem durante um tempo ajustável no início da soldagem, reduzindo assim o risco de fusão deficiente no início da união.

6.7) Memória dos dados de soldagem

Podem ser memorizados dois programas de dados de soldagem diferentes na memória do painel de controle.

Pressione o botão du durante 5 segundos para memorizar os dados de soldagem na memória. Os dados de soldagem estão memorizados quando a lâmpada indicadora verde começa a piscar.

Para alternar entre as diferentes memórias de dados

De soldagem pressione o botão

ou

A memória dos dados de soldagem possuem uma bateria de segurança para que as definições continuem ativas mesmo que a máquina seja desligada.

6.8) Códigos de Avaria

O código de avaria é utilizado para indicar a ocorrência de uma avaria no equipamento. É indicado no visor por um E seguido de um número de código de avaria.

É exibido um número de unidade para indicar qual a unidade que deu origem à avaria.

Os números dos códigos de avarias e os números das unidades são exibidos alternadamente.

Se tiverem sido detectadas várias avarias, só será visualizado o código da última avaria que ocorreu. Pressione qualquer botão de função ou gire o botão para retirar a indicação de avaria do visor.

NOTA! Se o controle remoto estiver ativado, desative o comando à distância pressionando para remover a indicação de avaria.

6.8.1) Lista de códigos de Avaria

U 0 = Unidade de dados de soldagem.

U1 = Unidade de refrigeração

U2 = Fonte de alimentação

U4 = Unidade de comando à distância

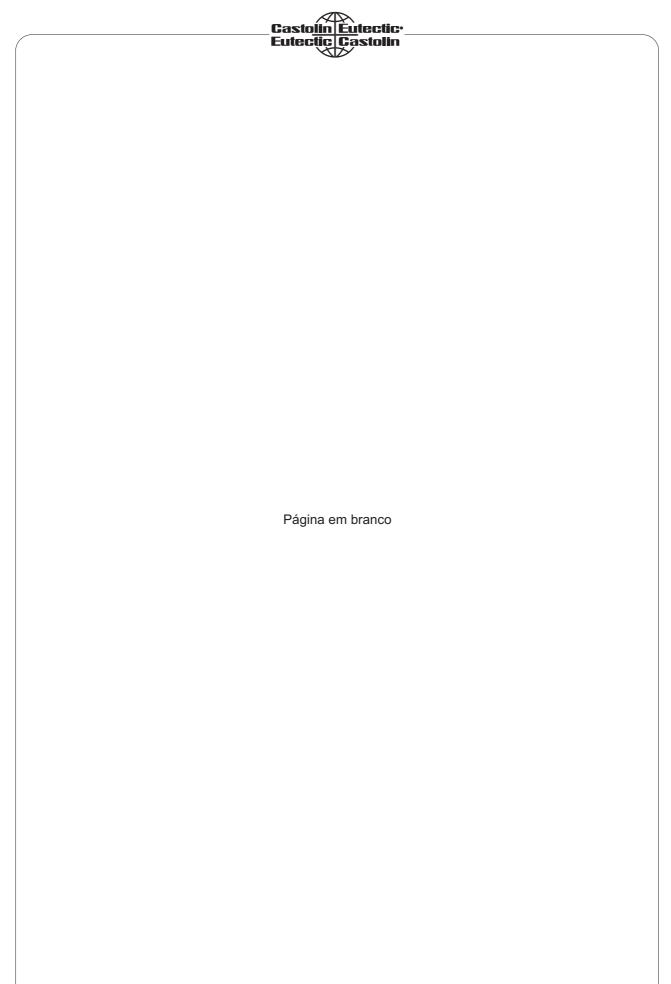
U5 = Unidade CA

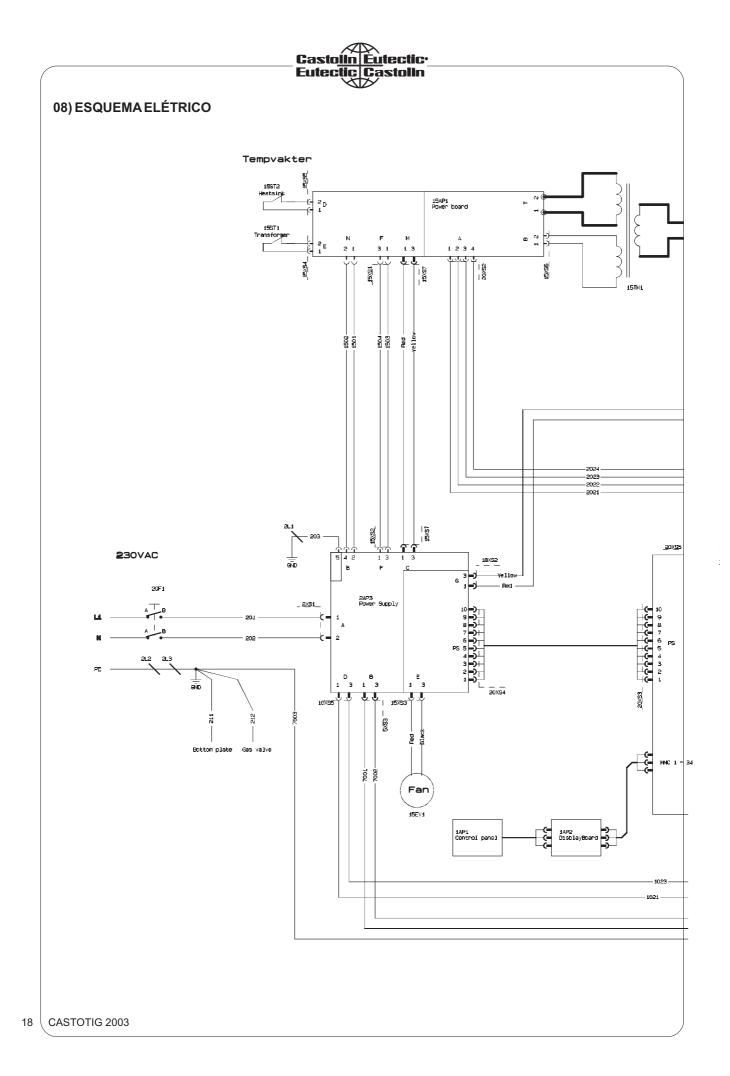
Função	Cor	U 0	U 1	U 2	U 4	U 5
4	Fonte de alimentação 5 V	х				х
6	Temperatura elevada		х	х		х
7	Temperatura elevada					х
8	Tensão de alimentação de 24V/15V		х			х
9	Tensão de alimentação -11 V		х			х
12	Erro de comunicação (aviso)	Х	х		х	х
14	Erro de comunicação ("bus" desligado)	Х				
15	Mensagens perdidas	х				
16	Tensão de circuito aberto elevada VRD			х		
19	Erro de memória	Х				
20	Indutância elevada no circuito de soldagem			х		
25	Contato perdido com unidade CA	х				
26	Avaria operativa do programa	х				
29	Não há fluxo da água de refrigeração	х	х			
41	Perda de contato com a unidade de refrigeração	х				

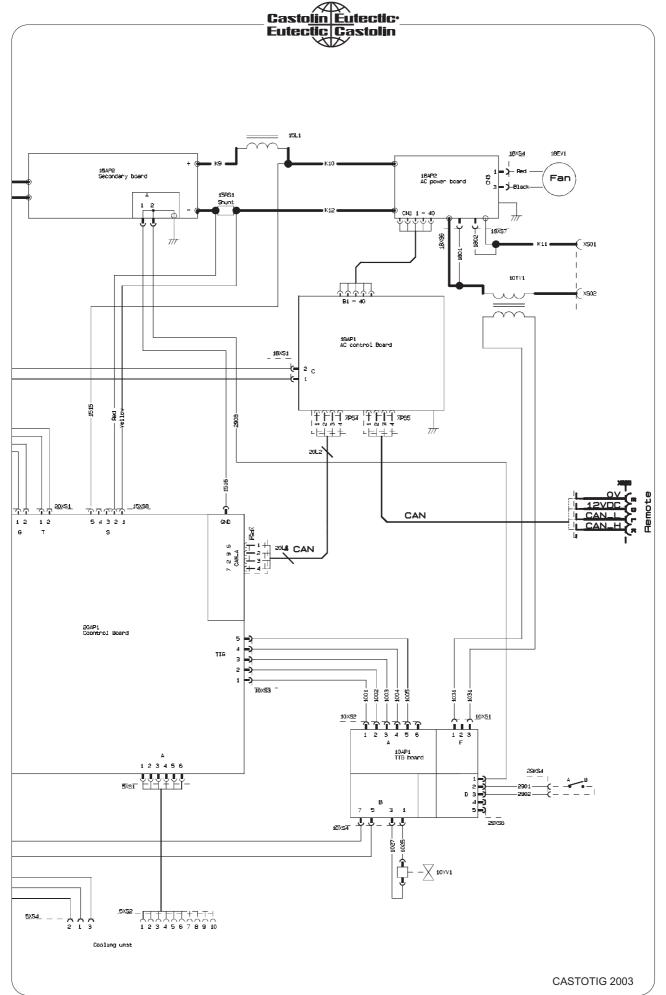
6.8.2) Descrições dos códigos de avaria

E 4	Fonte de alimentação de 5 V baixa
U 0	A tensão da fonte de alimentação está demasiado baixa.
U 5	Oprocesso de soldagem em curso é interrompido e não pode ser reiniciado.
	Ação: Desligar a alimentação da rede para reiniciar a unidade. Se a avaria persistir chame um técnico.
E 6	Temperatura elevada
U 1	O interruptor de sobrecarga térmica disparou.
U 2	O processo de soldagem em curso é interrompido e não pode ser reiniciado até a temperatura descer.
U 5	Ação: Verificar se as entradas ou saídas do ar de refrigeração não estão bloqueadas ou obstruídas com
	sujidade. Verificar o ciclo de trabalho que está a ser utilizado para ter a certeza de que o equipamento
	não está a ser sobrecarregado.
E 7	Temperatura elevada
U 5	O interruptor de sobrecarga térmica disparou.
	O processo de soldagem em curso é interrompido e não pode ser reiniciado até a temperatura descer.
	Ação: Verificar se as entradas ou saídas do ar de refrigeração não estão bloqueadas ou obstruídas com
	sujidade. Verificar o ciclo de trabalho que está a ser utilizado para ter a certeza até que o equipamento não
	está a ser sobrecarregado
E 8	Tensão de alimentação de 24 V/15 V deficiente
U 1	A tensão de alimentação está demasiado alta ou demasiado baixa.
U 5	O processo de soldagem em curso é interrompido e não pode ser reiniciado.
	Ação: Desligar a alimentação da rede para reiniciar a unidade. Se a avaria persistir chame um técnico.
E 9	Tensão de alimentação de 24 V/15 V deficiente
U 1	A tensão de alimentação está demasiado alta ou demasiado baixa.
U 5	O processo de soldagem em curso é interrompido e não pode ser reiniciado.
	Ação: Desligar a alimentação da rede para reiniciar a unidade. Se a avaria persistir chame um técnico.

E 1 2	Erro de comunicação (aviso)
U 0	interferência menos grave no bus de CAN.
U 1	Ação: Verifique se não há unidades avariadas ligadas no bus de CAN. Verifique os cabos. Se a avaria
U 4	persistir chame um técnico.
U 5	poroiotii oriamo am toomoo.
E 1 4	Erro de comunicação ("bus" desligado)
U 0	Interferência grave no bus ae CAN.
	Ação: Verifique se não há unidades avariadas ligadas no bus de CAN. Verifique os
	cabos Se a avaria persistir chame um técnico
E 1 5	Problemas de comunicação (mensagem perdida)
U O	O bus de CAN do sistema ficou sobrecarregado.
0 0	Ação: Se a avaria persistir chame um técnico.
E 1 6	Tensão de circuito aberto elevada VRD
U 2	A tensão de circuito aberto esteve muito alta.
0 2	Ação: Desligar a alimentação da rede para reiniciar a unidade. Se a avaria persistir chame um técnico
E 1 9	.Erro de memória
U O	0 conteúdo da memória existente está incorreto. Serão utilizados dados básicos. Ação:
0 0	Desligar a alimentação da rede para reiniciar a unidade. Se a avaria persistir chame um técnico.
E 2 0	Indutância elevada no circuito de soldagem
U 2	A fonte de alimentação não pode produzir a corrente pretendida porque a indutância medida no
0 2	
	circuito de soldagem é demasiado alta. A indicação de avaria é reinicializada se a leitura de indutância
	receber um valor suficientemente baixo no início da soldagem. A reinicialização também pode ser obtida
	desligando a alimentação.
	Ação: Utilize cabos de soldagem mais curtos e certifique-se de que não estejam enrolados. Coloque o
	cabo de soldagem e o cabo obra um ao lado do outro. Se possível, a indutância pode ser reduzida
	soldando com um arco mais curto.
	Se a avaria persistir chame um técnico.
E 2 5	Contato perdido com unidade CA
U 0	0 painel de controlo perdeu o contato com a unidade CA.
	0 processo de soldagem em curso é interrompido.
	Ação: Se a avaria persistir chame um técnico.
E 2 6	Avaria operativa do programa
U 0	Algo impediu o processador de realizar as suas funções normais no programa.
	0 programa é reiniciado automaticamente. O processo de soldagem em curso será interrompido. Esta
	avaria não desativa quaisquer funções.
	Ação: Se a avaria persistir chame um técnico.
E 2 9	Não há fluxo da água de refrigeração
U 0	0 interruptor de controle de fluxo disparou.
U 1	0 processo de soldagem em curso é interrompido e não pode ser reiniciado.
	Ação: Verificar o circuito da água de refrigeração e a bomba.
E 4 1	Perda de contato com a unidade de refrigeração
U 0	A unidade de dados de soldagem perdeu o contato com a unidade de refrigeração. O processo
	de soldagem é interrompido.
	Ação: Verificar a cablagem. Se a avaria persistir, chamar um técnico.

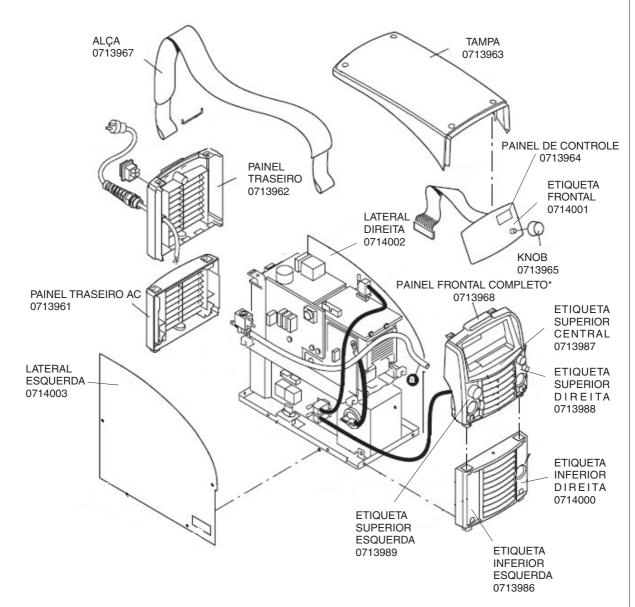



7) MANUTENÇÃO

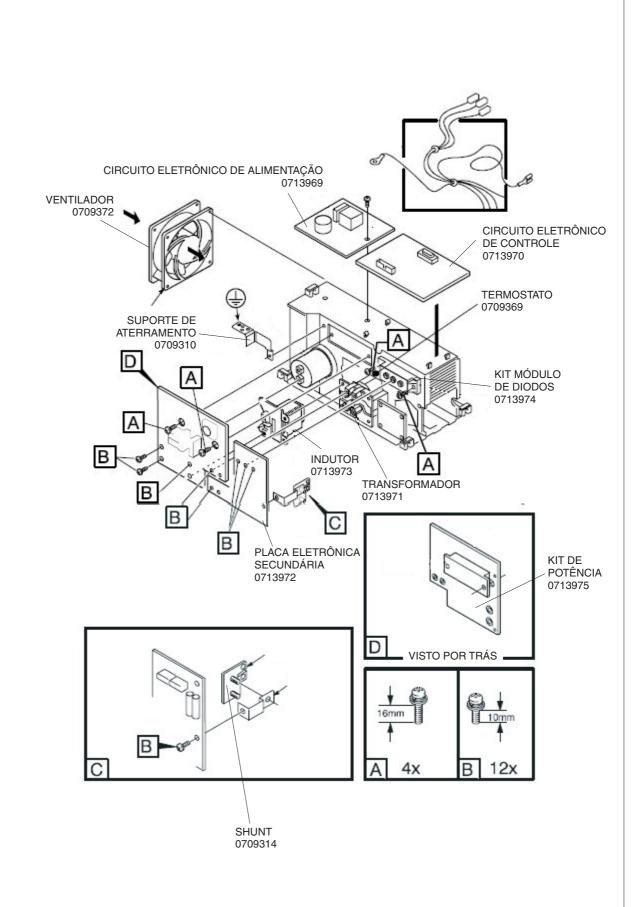

7.1) Recomendações

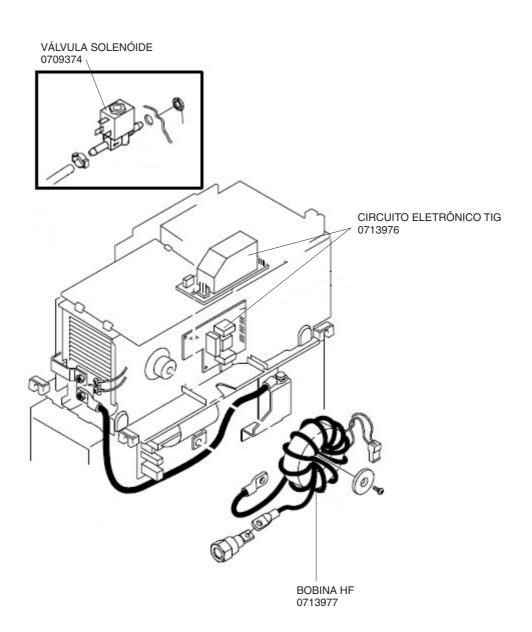
Em condições normais de ambiente e de operação, o CASTOTIG não requer qualquer serviço especial de manutenção. É apenas necessário limpá-lo internamente pelo menos uma vez por mês com ar comprimido sob baixa pressão, seco e isento óleo.

Após a limpeza com ar comprimido, verificar o aperto das conexões elétricas e a fixação dos componentes. Verificar a existência de rachaduras na isolação de fios ou cabos elétricos, inclusive de soldagem, ou em outros isolantes e substituí-los se defeituosos.

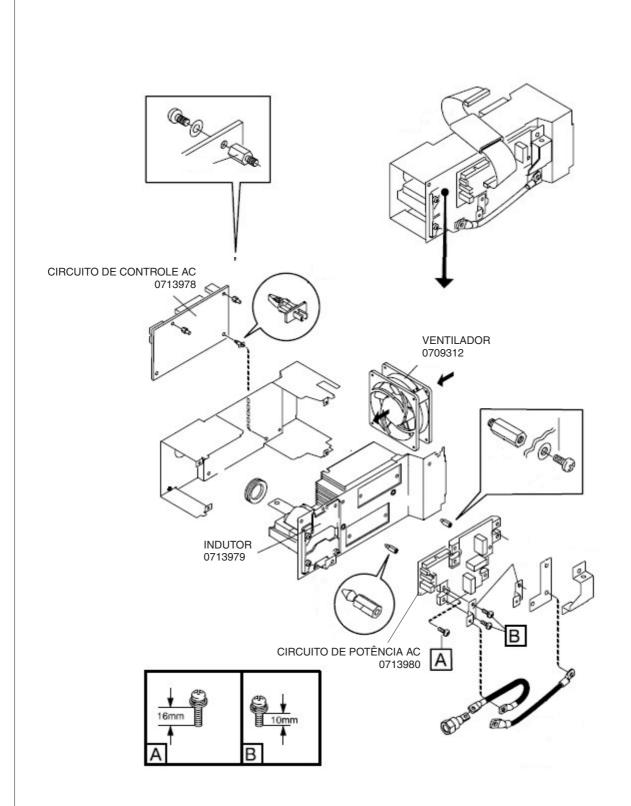


09) PEÇAS DE REPOSIÇÃO




* PAINEL FRONTAL COMPLETO: INCLUI PAINEL FRONTAL, CONECTOR DE CORRENTE, CONECTOR DE GÁS, TOMADA DO GATILHO, CAPA DE PROTEÇÃO E **CONECTOR REMOTO**

NOTA:


PEÇAS PARA REPOSIÇÃO PARA A TOCHA TIG: ENGATE DE GÁS - 0714004 CONECTOR DO GATILHO - 0714005

EUTECTIC DO BRASIL

SÃO PAULO - SP: Rua Ferreira Viana, 146 - CEP: 04761-010 - Tool Free: 0800 703 4360 - (11) 2131-2300 FAX: (11) 2131-2390

BELO HORIZONTE: Tel.: (31) 2191-4488 Tool Free: 0800 703 4361 - FAX (31) 2191-4491

CURITIBA: Tel.: (41) 339-6207 - FAX (41) 339-6234 • PORTO ALEGRE: Tel.: (51) 3241-6070 - FAX (51) 3241-6070 RIBEIRÃO PRETO: Tel.: (16) 624-6486 - FAX: (16) 624-6116 • RECIFE: Tel.: (81) 3327-2197 - FAX (81) 3327-6661 RIO DE JANEIRO: Tel.: (21) 2589-4552 - FAX: (21) 2589-5252 • SALVADOR: Tel.: (71) 374-6691 - FAX: (71) 374-6703

Internet: http://www.eutectic.com.br

Publicação: 0210196 rev 0 02/2008